
Assembly, Shellcode
and Buffer Overflows

Alexandru Birnberg

Overview

64-bit x86 assembly

Linux-based OS

Intel notation

Assembly

• Low-level programming language

•Directly translated into machine code

•Processor-specific

Sections

.text
The .text section is used for containing
the actual code.

.data
The .data section is used for declaring
initialized data or constants. This data
does not change at runtime.

.bss
The .bss section is used for declaring
variables.

Statements

Definition: “An instruction is a statement that is executed at runtime.”

Syntax
[label] instruction [operands] [;comment]

Example
add rax, rbx

Labels

•Placed at the beginning of a statement

•Assigned the current value of the active location counter

•Must be defined only once

_start label – Entry point to your code

Operands

• For instructions with two operands, the first operand is the destination operand,
and the second operand is the source operand (that is, destination<-source).

• Some instructions have implicit operands. (e.g. jnz)

Types:

• Immediate (e.g. 0xdeadbeef)

• Registers (e.g. rax)

• Memory (e.g. [rax + 0x10])

Registers (1/2)
• Memory locations inside the CPU

General purpose registers
• rax – Accumulator register

• rbx – Base register

• rcx – Counter register

• rdx – Data register

• rsi – Source index register

• rdi – Destination index register

• rsp – Stack pointer register

• rbp – Stack base pointer register

Registers (2/2)

FLAGS Register
• Provides no direct access

Instruction Pointer
• Contains the address of the next instruction to be executed
• Can only be modified through the stack
Others
• Segment registers (e.g. SS, CS, DS)
• Instruction set extensions (e.g. xmm0-xmm7)
• System registers (e.g. debug registers)

Memory

Syntax: [base + index * scale + offset]

•base and index – 64 bit registers

• scale – can be either 1, 2, 4, or 8 (default is 1)

•offset – the displacement of the desired memory value

Endianness

•The order in which bytes are stored in memory

Little endian – least significant byte first

Big endian – most significant byte first

• Intel uses the little-endian format

Common Instructions (1/2)

Data Transfer

•mov dst, src

•push arg

•pop arg

• xchg dst, src

• lea dst, src

Arithmetic

•add dst, val

• sub dst, val

• inc reg

•dec reg

•neg reg

Logic

•and dst, mask

•or dst, mask

• xor dst, mask

•not arg

Common Instructions (2/2)

Control Flow

• test arg1, arg0

• cmp arg1, arg0

• jmp loc

• jcc loc

• call loc

• ret [val]

• syscall

Others

• lea reg, [mem]

•nop

System V AMD64 Calling Convention

rax – returning value of a function

rdi, rsi, rdx, rcx, r8, r9 – arguments to a function (in that order)

rsp – stack pointer

rbp – frame pointer

Stack Frames

•push decrements rsp then stores the argument
 on the top of the stack

•pop stores the value from the top of the stack
 into the argument and increments rsp

• call pushes instruction pointer onto the stack
 and sets it to the value of the argument

• ret pops instruction pointer off the stack

Buffer overflows

Syscalls

•A syscall instruction invokes an OS system-call
handler at privilege level 0.

• System V AMD64 calling convention

• rax – contains the number of the system call

NASM Quick Introduction

Usage steps:

1. Assemble
nasm –f elf64 shellcode.asm

2. Link
ld shellcode.o -o shellcode

3. Dump
objdump –d shellcode

Basic Structure:

Basic Shellcode

ASM C

Reverse Shellcode

Overview
•Basic shellcode + extra setup

Reverse Shellcode

ASM C

Reverse Shellcode
ASM C

Reverse Shellcode

ASM C

References

•https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/ennby
/index.html

https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/ennby/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/ennby/index.html

